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Abstract 

Assuming a real toms acting on a Kahler manifold through holomorphic isometries, we obtain 
an ansatz for extremal KS.hler metrics and we get new extremal metrics on some CPI-bundles 
over products of K~hler-Einstein manifolds of negative scalar curvature. We prove that one of the 
extremal metrics in four dimensions is locally conformally Einstein. © 1999 Published by Elsevier 
Science B.V. All rights reserved. 
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1. Introduct ion 

In this paper we construct new extremal K~ihler metrics on certain CP l -bundles over prod- 

ucts of Kahler-Einstein manifolds of negative scalar curvature. These metrics generalize 

recent extremal examples obtained on ruled surfaces [ 17]. 

We begin by constructing an ansatz for extremal metrics with commuting holomorphic 

isometries and we obtain a system of differential equations for the scalar curvature with re- 

spect to the K~thler quotient coordinates and the Hamiltonian functions. Such a Hamiltonian 

approach has been used earlier in studies of other K~ihler geometries [11-15]. 
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Then we solve these equations in a special case which allows for a compactification 

to the projectivization P ( O  (9 @i'--I K/-j ). Here the tensor product @in l K ~  1 is a pull 

back to the product BI x - • - x Bn where K/-1 are the anti-canonical bundles of negative 

scalar curvature K~ihler-Einstein manifolds Bi. The case where each Bi has positive scalar 

curvature is contained in the Koiso-Sakane approach [ 10] followed by Hwang [8]. 

Finally, in four dimensions, one of  the metrics is locally conformally Einstein and we 

relate this fact to strongly extremal K/ihler metrics [9,16]. 

2. An ansatz for extremal K~ihler metrics 

The notion of extremal K~hler metrics was introduced by Calabi [2-4]. On a compact 
manifold M 2m consider the functional 8($2) = fM S2~2m where I2 is a K~ihler form in a 

fixed Kahler class [$2] 6 H 2 ( M ,  ~) and s is the scalar curvature of  $2. Critical points of  S 

are called extremal K~ihler metrics. 

Extend the Riemannian metric g -  1 on T* M to a complex bilinear form on T * M  ® C and 

let ~ be the isomorphism T* M ® C --+ T M ® C given by ot: = g -  1 (a, .). Then g is extremal 

if and only if the (1,0)-vector field (0s) ~ is holomorphic. Alternatively, the gradient, grad s, 

of  s is an infinitesimal automorphism of the complex structure J,  i.e. the Lie-derivative 

/~grads J vanishes. 

Following [15] we consider the situation with a real torus T N acting freely on the K~ihler 

manifold M 2m through holomorphic isometries. 

Proposition 2.1. Let (tOij), i, j = 1 . . . . .  N and (qav), #,  v = 1 . . . . .  m - N be po- 

sitive definite matrices o f  smooth functions on an open set U in C m-N × ~N with co- 

ordinates (~t~ = xt~ + iya,  zi). Let M be a TN-bundle over U with connection 1-form 

co = (col . . . . .  coN) = (dtl + 01 . . . . .  dtN + ON) where (tl . . . . .  tN) are coordinates on T g 

and Oi = Aiu dx t~ ÷ Bi~ dy u + Cij dz j is defined on U. Suppose that 

02quv 02Wkl 02Wkl 

OzkOz~ + Oxt~Ox~q + OyUOy ~ -- O, (1) 

0 wkl 0 wki 
OZ j - -  OZ I , (2) 

OCk/ OCkj 

O z . i -  Oz I (3) 

and assume the torus bundle has curvature 

Owkl Owkt dz l dxU. (4) Fk -- Oquv dx u m dy ~ + dy ~ m dz l + m 
Oz k ~xU Oy" 

Then 

g = q~v(dx u dx" + dy u dy ~) + Wij dz i dz j -k- toiJCOicoj 

is a Kiihler metric on M. Conversely, any Kgihler metric with a torus acting freely through 

holomorphic isometries can locally be constructed as above. 
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Proof.  The proof is straightforward and we just explain a few things about the second part 

of  the proposition. Suppose M is a TN-symmetric K~ihler manifold with metric g, K~ihler 

form I2 and complex structure J and suppose (Xl . . . . .  XN)  are Hamiltonian vector fields 

generated by the torus action. Let dz j = --ixi ,(2 define the Hamiltonian functions z i . Then 
the metric is given as 

g = q + toij dz i dz j -}- wiJogiogj 

where q is a Kithler metric on the quotient space of each level set of the Hamiltonians. 

Note that tO ij = g(Xi ,  Xj) .  We have g ( J X i ,  X j )  -= -dT~i(x j )  so Jco i = -tt~ij dz ,i and 

I2 = S'2q + dz k/x ~ok where I2q is the Kithler form of the K~ihler quotient. As J is integrable 

the exterior derivative d~0k of  the (1,0)-forms qgk ---- Wkl dz I + icok must have no (0, 2) part. 

Also, for g to be Kahler we need d~2 = 0. These conditions are summed up in (2), and (3) 

and in the equation d~ok = Fk with Fk as in (4). Now, (1) is just the integrability condition 
dFk = 0 .  [] 

R e m a r k  2.2. Eq. (4) implies a series o f  identities. For example, there are three monopole- 

like equations 

0 wk/ 0 Ckt 0 Bkx 
- -  - -  - -  ( 5 )  

Ox ~ Oy z OZ t ' 

Owkt OAkx OCkl 
- -  - - -  ( 6 )  

0y x Oz t Ox ~ ' 

Oqu~, OBkv OAku 
- - -  - ( 7 )  

az k OxU Oy" ' 

and equations 

OAl~ _ OAh__ (8) 
Ox v Ox/~ ' 

OBl~z OBh, 
- -  - -  - -  ( 9 )  
03" 0Y ~ 

Now, let M 2m be a T N-symmetr i c  Kahler metric as above. We look for the condition on the 

scalar curvature s for the metric to be extremal. We have the (1, O)-forms d~" = dx" + i d v" 
and dz k - iu, klojl, so Os = / (ds - i J  ds) is given by 

Os 1 0 s  k 
0s = 0gi' d~u + 2~k-zk (dz -iu'kl°91)" (10) 

Therefore we get 

(Os) z =  ~-~q  ~ i J o x  v - al,~ qUV + 2 ~  -~I 

We need to spell out the conditions for the vector field (0s) ~ to be holomorphic. 
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L e m m a  2.3. There exist smooth functions Fku such that the forms q~ = Fl,~ d~ ~ + 
w~t dz ~ + iw~ together with d~ ", # = 1 . . . . .  m and k = 1 . . . . .  N, are a basis of  holomor- 

phic (1, O)-forms. 

Proof.  Certainly d~ ~ is holomorphic and we look for holomorphic (1, 0)-forms given 
as qbk = Fku d~ u + G~qgl for smooth functions Fkt~, G~ and ~0k = w~/dz t + ioJk. Note 
that ~k(O/Otl - iJ(a/Otl))  is holomorphic if q~k is holomorphic because O/(Otl) is a real 
holomorphic symmetry. However, ~k (O/(OtD - iJ(O/(Otl))) = 2iG~ so we already know 

that 0G~ = 0. We need (dq~k) (~' 1) = 0 and we find (d~k) (1' I) = ~Fku/x d~ u + G~ d~o~ ~' ~) 

Due to (2) and (4) we find 

tOlj dtp~l,1) 10qut, d~ u A d~ v + d~ u A (dz j - iwJPwp). 
- 2 0 z  I f f - ~  

Put G~ = 6~. Then (d~k) (1'1) = 0 iff 

0 Fkl~ 0 tOkj 
20-- ~ -  = 0 ,  (11) 

OzJ 

Oqu~' + 20Fku_ = 0 .  (12) 
Oz k O~ ~ 

Now, the integrability condition for systems (11) and (12) is easily seen to be satisfied 
due to (1), (5) and (9). rq 

We are now ready to prove our ansatz. We refer to Proposition 2.1 for the notation. 

N Theorem 2.4. Let M 2m be a T -symmetric compact Kiihler manifold of  scalar curvature 

s. Then the metric is extremal iff 

Oz k q ~ = 0 ,  (13) 

Oz k q = 0, (14) 

0x z q ~ = ~ y Z  \ q  0 - - ~ ] '  (15) 

O ( u~ Os ~ _  0 q ~yU (16) 
Oy z \ q  ~ x ~ ]  Ox z 

OZs +~u~Owkt Os +~u~OWkl Os _ 0 ,  (17) 
OZkOZ I q Ox ~ OxU ~ Oy v Oy~ 

OS OWkt Os OWkl 
q u a _ _  _ qUV - -  • (18) 

OxU Oy ~ OyU Ox ~ 

Proof.  (Os) z is holomorphic iff d~U((0s) :) and q~k ((0s) :) are holomorphic functions for 
all # and k. We have seen in (10) that 
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15 ~ f = Of d~ u + (dz/,. _ iwkl w/) 
og" 2 z 

for a function f .  This leads to the six equations above. [] 

29 

Obviously we need an expression for the scalar curvature in order to be able to work with 

the ansatz in Theorem 2.4. We have 

Proposition 2.5. Let M 2m be a symmetric Kiihler metric as in Proposition 2.1 and let 

u = log det q - log det w. Then the scalar curvature s satisfies 

/ O2u 02u ( w k l O U ~  Oqllv } 0 (wklOU ~ 
- s  = OxUOx - - - - - - -7  + OYuOY t~ + qj~V + . 

Proof.  We have the Ricci form p = -½  d J  d log det g and det g is the ratio between the 

volume and the 2m form associated with a holomorphic frame. From the identity Y2 = X-2q + 
dz k Awk we get vol = (1/m!)I2 m vol(q) N = A ( A k -  I dzk A wk). Furthermore, the 2m-form 

qJ associated to the holomorphic frame dU ~, 45k satisfies ( i / 2 ) m o  = det w A~._I dzk /~ 

Wk A a =  1 dx u/X dy/~. Since vol(q) = " " /x" = m aetq u=l dx l~Ady/~wege tde tg  d e t q ( d e t w ) - t "  

Furthermore, 2mp/x  £-2 m-1 = sI2 m which after some elementary computations gives the 

claim. [] 

3. Examples of new extremal Kiihler metrics 

Assume N = 1, that is assume that we have an S j -symmetric K~ihler manifold M 2m. 
R2 ml • • B~ m'' of Assume, furthermore, that the K~ihler quotient B 2m-2 is a product ~l x • x 

compact K~ihler-Einstein spaces (Bi, Qi) of scalar curvature --2mi and that the Kahler 

metric q on B is equal to zQ where Q = Y'~4n:l zr*Qi and zri: B --~ Bi is the projection 

onto the ith factor. Then we have 

0 2 log det Qi 1 
a ~  ag/v -- 5(Qi)t ,v,  

where ~/u are complex coordinates on Bi. Also, 

u ---- (m - 1)log z + L log det Qi - log w, 
i=1 

where u is defined in Proposition 2.5. It follows that 

u z = ( m -  1)z - l - w  - 1 o w  
Oz 

and that the scalar curvature is 

s : - - ( m - - 1 ) ( ~ q - w - l ' z - l O ~ z z )  -- OZO ( w _  IO~z ) 
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The only equat ion on s left  f rom T h e o r e m  2.4 is OZs/Oz  2 = O, i.e. s = Az + B for constants  

A,  B o f  integration. Therefore  ~o = w -  J Ou/Oz satisfies 

z ~ -  z + ~0(m - 1) = - 2 ( m  - 1) - Az 2 - Bz,  

- 1 0 w  
w - -  = ( m - -  1)z - l - w t p .  

0z 

We integrate these equat ions to get  w - t  = p (Z) /Z  m -  1 where  

P(z)  = - 2 z m  - ClZ m+2 - c2z m+l - c3z - c4 
m 

(19) 

for ci, i = 1, 2, 3, 4 constants  o f  integrat ion (compare  this with the corresponding poly-  

nomials  in [3,6]). Fur thermore ,  f rom Eq. (4) we  have dw = ~ i n l  ~'2 i where  ~"2 i is the 

K~ihler fo rm of  Bi. The Chern  form c j (K/ -  l) o f  the ant i -canonical  bundle K71 of  Bi equals 

p i /27r ,  where  Pi = --ff2i is the Ricci  fo rm of  B i . T h u s ,  the mani fo ld  M of  the K~ihler metr ic  

g = z a  + w d z  2 +//)-10)2 is ~)11_1 (K/-1 - {0}). 

T h e o r e m  3.1. Let M 2m be the total space of  the C•l-bundle P ( O  ~) (~'i'=l K Z  l) over 

products BI 2ml )< . . .  X Bn 2m" o f  Kiihler-Einstein manifolds Bi o f  scalar curva ture-2mi ,  

where Ki is the canonical bundle o f  Bi and mi is the complex dimension of  Bi. Then M has 

an S 1 -symmetric extremal Kiihler metric. 

Remark 3.2. 
1. When n = 1 and m 1 = 1 this metric is contained in the work o f  TCnnesen-Friedman 

[17]. 

2. We could have considered a situation where each Bi has positive scalar curvature but 

this case is contained in the Koiso-Sakane approach [ lO]followed by Hwang [8]. 

Proof  of  the t h e o r e m .  We wil l  show that the metr ic  constructed above o n  ~ ) i t  1 (K/ - l  - {0}) 

can be compact i f ied.  We need  z > 0, w > 0 and thus P (z) > 0. Suppose  we  have posi t ive 

numbers  a > b such that w > 0 on the interval  (a, b) and w - l  = 2(z - a)  + O(z  - a)  2 

near  a ;  w - l  = 2(b - z) + O(z  - b) 2 near  z = b. Then  we can add a copy of  Bl × . . .  × Bn 

at a and b to get the compac t  C P l - b u n d l e  [13,14]: for example ,  near z = a,  set r = z - a,  

then g = (1 + O ( r 2 ) ( d r  2 + r2w2). The condi t ions  on w -1 can be rewritten as w -1 (a) = 

w - I  (b) = 0, ( w - I ) 1 ( a  ) = 2, ( w -  I) ' (b)  = - 2  or  equivalent ly  

P(a)  = P(b)  = O, P ' (a)  = 2a m- l ,  P ' (b)  = - 2 b  m- l .  (20) 

We may  rescale the metr ic  such that a = 1. Thus,  we  need to prove the exis tence o f  b > 1 

such that (20) is satisfied and P(z)  > 0 on 1 < z < b. The  condi t ions  in (20) determines  

the coeff icients  c l ,  c2, c3, c4 in terms of  b and m. To, fur thermore,  secure P(z)  > 0 on 

1 < z < b, the boundary  condi t ions  in (20) show, it is enough  to prove that for each m we  

can find b such that P ' ( z )  < 0 on 1 < z < b, which  we  prove in the fo l lowing lemma.  [] 
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L e m m a  3.3. There exists t3 > 1 such that f o r  b E (1, 13), P" (z) is negative in the interval 

[1, b]. 

Proof. We can wri te  P"(z )  = zm-2s,,, (z) where  

S, , (z)  = - c l  (m 4- 2)(m 4- 1)z 2 - c2(m 4- l )mz  - 2(m - 1). 

One  can show f rom (20) with a = 1 that if  we set 

tl : =  2 ( - ( m  4- 1)b 2m 4- 2m2b ''~÷l - 2(m 2 - 1)b m 4- (m - 1)), 

t2 := 2( (m 4- 2)b 2m÷1 - 2m(m 4- 1)b m÷2 

4-(2m 3 4- 3m - 2)b m+l - (m 4- 2)b"' - (m - 2)),  

and 

n : =  m ( - b  2m+2 + (m + l )2b  ' ' +2  - 2m(m + 2)b m+~ + (m + l )2b m - 1), 

then cl = t l / n  and c2 = t2/n.  For  m fixed, cl and c2 can be v iewed as funct ions o f b  > 1. 

Moreove r  t j ,  t2 and n are c lear ly  analyt ic  funtions of  b, also at b = 1. 

First ,  observe  that 

dti  d2tt . . .  d3tl 
t l (1 )  = - ~ ( 1 )  = - - d - ~ ( l )  = 0 and -~5-3 (1) < 0. 

This  impl ies  that there exists a constant  br~ > 1 such that for  b E (1, btt ), tl (b) < 0. 

Second,  observe  that 

dn d2n d3n d4n 
n ( l )  = -d--~(1) = - ~ ( 1 )  = ~ 3 ( 1 )  = 0 and - ~ ( 1 )  < 0. 

This  impl ies  that there exists a constant  b,, > 1 such that for  b c (1, b,,), n < 0. Third,  

cons ider  the funct ion h(b) : =  mt2 + (m + 2)t l .  Observe  that 

dh d2h d3h 
h ( l )  = - - ~ ( 1 )  = ~ - ~ ( 1 )  = 0 and ~-~--~3 (1) < 0. 

This  impl ies  that there exists  a constant  bh > 1 such that  for  b ~ ( l ,  bh), h(b) < 0. Now, 

define 13 = min(bt t ,  b,,, bh). Let  b ~ (1, 13). Since  cl (b) > 0 we have that S,,, is concave 

down. Since  h(b) < 0 and tl < 0 the sum of  roots  ( if  any) 

mc2 mt2 

- ( m  + 2)cl  - - ( m  + 2)tl  

is less than 1. Since Sm (0) = - 2 ( m  - 1) we have that the roots of  Sin, i f  any, wil l  have the 

same sign. Therefore  each root  is less than 1. Thus,  for  b 6 (1,13), Sin(z) < 0 for z >_ 1. In 

part icular,  Sm and P"(z )  are negat ive in the interval  [1, b]. [] 

R e m a r k  3.4. These examples are not only important because they give new extremal Kgihler 

metrics. Also, our work gives an example o f  a strongly extremal Kiihler metric [9,16]. This 

proper D, is closely related to the existence o f  a local Einstein metric in the conformal class o f  
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one of  the extremal Kgihler metrics o f  TCnnesen-Friedman. The relation to Einstein geometry 

is a topic we shall consider in the next section. 

4. Einstein metrics in dimension four 

The extremal K~ihler metric of  TCnnesen-Friedman in dimension four is defined on a 

ruled surface M (a Riemann sphere bundle over a complex curve) of  genus g > 1 [17]. 

Using the fact that the homology of  such a surface is generated by a fiber and a section of  

the projection to the Riemann surface, it is easily seen that the Euler characteristic X (M) 

satisfies X (M) = 4(1 - g) (indeed, the Euler characteristic is multiplicative in fibrations). 

As Einstein manifolds in dimension four must have non-negative Euler characteristic [ 1 ], 

the T0nnesen-Friedman metric is not globally conformal to an Einstein metric. However, 

here we shall consider the local behavior and compare with the Calabi metric. 

Consider the two triplets of  one forms a/~ given by 

da~ = a ~  A a ~ ,  da~ =cr~ A a ~ ,  dc r~=ea~  Acr~, e=-4-1 .  (21) 

Furthermore, consider the metrics 

ge _ Z (dz) 2 -q- PE(Z) (w~)2 
4Pc(z) z 4 

where 

- -  -'1- Z ( (0"~)2  -1- (0"~)2)  
4 ' (22) 

PE(z) = ez 2 - q z  4 - c2z 3 - c3z - c4. (23) 

For E = + 1 we get Calabi's extremal metrics in the Bianchi IX class (with U(2) isometry 

group) while for e = - 1  we get the local version of  the TCnnesen-Friedman metrics in 

the Bianchi VIII  class (with U(1, 1) isometry group. In the compact metric only the circle 

symmetry remains after taking quotient by the discrete group). 

In both cases the scalar curvature is given by 

s =  12q z +  . (24) 

It is known [7] that if s 3 + 6sAs  -- 12[dsl 2 is constant, then the metric gE = g , / s  e is 
locally Einstein. 

This relation gives only one constraint 

4Cl c4 = c2c3. (25) 

For fixed volume this constraint determines a unique KS.hler class ofgE within the range of  
a T0nnesen-Friedman metric. The fact that one of  the extremal metrics is locally conformally 
Einstein implies that the extremal metric is also strongly extremal [9,16]. 

In order to compare with the work in the case of  the Calabi metric [6], suppose that 
ce ~ 0, in which case we can define new coordinates and parameters by 
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2Cl z -+- c2 '  
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C~ ClC 3 4XI 2 C~ ClC3 
• + ~ c l  + - -  ' - " - - M .  (26) 

c2 3 4Cl c2 

Then the metric 

g~ 
gE = 7212 ClC2-s~ 

is given by 

with 

[ 1 -- r 2 ~ . A~ (r) . e .2  } 
gE ----- 12 { A---~r) (dr)" -t- 4 1---7~2 (or 3 ) q- (1 - r2)((ff~) 2 q- (~r~) 2) , 

(27) 

(28) 

A ~ ( r ) = ' ~ '  r 4 + ( e - 2 X 1 2 ) r  2 - 2 M r + • - ) , / 2 .  (29) 
3 

The Derdzinski criteria gives that gE is indeed Einstein and a direct computation shows 

that the Einstein constant is equal to ;v. For • = + 1 these metrics were derived by Carter 

[5] while for • = - 1 we get its Bianchi VIII  partner. The Calabi metric is defined on ruled 
surfaces of  genus zero. If  the degree of the line bundle is equal to 1, the manifold is the blow- 

up of the complex projective plane in one point and the Calabi metric is globally conformal 
to the Page metric [6]. The TCnnesen-Friedman metric is locally conformally Einstein but 

due to the vanishing of the scalar curvature (24) on the ruled surface, the conformal change 

does not extend to the compact surface, in agreement with the topological arguments above. 

However, there are complete non-compact Einstein metrics in this Bianchi VIII  family (on 
D × ~2 where D is the disk in ~2). 

A c k n o w l e d g e m e n t s  

Thanks are due to Claude LeBrun for useful conversations and support. 
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