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Abstract

Assuming a real torus acting on a Kidhler manifold through holomorphic isometries, we obtain
an ansatz for extremal Kahler metrics and we get new extremal metrics on some CP'-bundles
over products of Kihler-Einstein manifolds of negative scalar curvature. We prove that one of the
extremal metrics in four dimensions is locally conformally Einstein. © 1999 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

In this paper we construct new extremal Kéhler metrics on certain CP I_bundles over prod-
ucts of Kihler-Einstein manifolds of negative scalar curvature. These metrics generalize
recent extremal examples obtained on ruled surfaces [17].

We begin by constructing an ansatz for extremal metrics with commuting holomorphic
isometries and we obtain a system of differential equations for the scalar curvature with re-
spect to the Kihler quotient coordinates and the Hamiltonian functions. Such a Hamiltonian
approach has been used earlier in studies of other Kahler geometries [11-15].
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Then we solve these equations in a special case which allows for a compactification
to the projectivization P(O @ ®'_, K;”"). Here the tensor product ®"_, K 7! is a pull
back to the product By x --- x B, where K i_l are the anti-canonical bundles of negative
scalar curvature Kihler-Einstein manifolds B;. The case where each B; has positive scalar
curvature is contained in the Koiso—Sakane approach [10] followed by Hwang [8].

Finally, in four dimensions, one of the metrics is locally conformally Einstein and we
relate this fact to strongly extremal Kihler metrics [9,16].

2. An ansatz for extremal Kiihler metrics

The notion of extremal Kihler metrics was introduced by Calabi [2—4]. On a compact
manifold M2 consider the functional S(£2) = f M 5282™ where §2 is a Kihler form in a
fixed Kihler class [§2] € H2(M, R) and s is the scalar curvature of £2. Critical points of S
are called extremal Kihler metrics.

Extend the Riemannian metric g~' on 7*M to a complex bilinear form on 7*M ® C and
let £ be the isomorphism T*M ® C — TM ®C givenby &* = g~ !(a, -). Then g is extremal
if and only if the (1,0)-vector field (3s)* is holomorphic. Alternatively, the gradient, grad s,
of s is an infinitesimal automorphism of the complex structure J, i.e. the Lie-derivative
Lyraa s J vanishes.

Following [15] we consider the situation with a real torus 7 acting freely on the Kihler
manifold M>" through holomorphic isometries.

1

Proposition 2.1. Let (w;;), i,j = 1,...,N and (), p,v = 1,...,m — N be po-
sitive definite matrices of smooth functions on an open set U in C" N x RN with co-
ordinates (" = x* + iy*,7'). Let M be a T" -bundle over U with connection 1-form
®=(w),...,on5)=(dt) +61, ..., dty +0x) where (11, . .., ty) are coordinates on TV
and 6; = A, dx* + B, dy* + Cj; dz/ is defined on U. Suppose that

g wy 2wy (1)
K9zl axraxy  AyrayY
awkl awk./‘
az/ a7’ @
dCr; aCy;
azl a7 3
and assume the torus bundle has curvature
G ow ow
Fo= q““d#Ady +a——dy A dg + o Kdzl A dxH, @)
yH

Then
g = quu(dx” dx" 4+ dy* dy”) + wy; dz'dz/ + wijwiwj

is a Kihler metric on M. Conversely, any Kdhler metric with a torus acting freely through
holomorphic isometries can locally be constructed as above.
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Proof. The proof is straightforward and we just explain a few things about the second part
of the proposition. Suppose M is a T -symmetric Kihler manifold with metric g, Kihler
form £2 and complex structure J and suppose (X1, ..., X n) are Hamiltonian vector fields
generated by the torus action. Let dz/ = —iy ;52 define the Hamiltonian functions z/. Then
the metric is given as

g=4q+w dz' dz/ + wija),-a)j

where ¢ is a Kidhler metric on the quotient space of each level set of the Hamiltonians.
Note that w'/ = g(X;, X;). We have g(JX;, X;) = —dz/(X;) so Jw; = —w;;dz/ and
2=2,+ dz* A w; where £2, is the Kihler form of the Kihler quotient. As J is integrable
the exterior derivative dg; of the (1, 0)-forms ¢r = wy; dz’ + iwr must have no (0, 2) part.
Also, for g to be Kihler we need d§2 = 0. These conditions are summed up in (2), and (3)
and in the equation dw; = F; with F; as in (4). Now, (1) is just the integrability condition
dF;, =0. O

Remark 2.2. Eq. (4) implies a series of identities. For example, there are three monopole-
like equations

dwy  9Cy 3By,

— = — — , (5
dxr  Byr az! )
dwy  0Ax. oC

Wl _ /;A _ %%k ©)
vt 9z dx
dquv _ 9Bry A4, (7)
azk T axk Byv
and equations

A1, _ 3A[V’ )
ax" axH
By, _ 3B[v. ©)
a)v\' ay:u

Now, let M bea T -symmetric Kéhler metric as above. We look for the condition on the
scalar curvature s for the metric to be extremal. We have the (1, 0)-forms d&§¥ = dx" +idv’
and dz¥ —iwk wy, s0 ds = 1(ds —iJ ds) is given by

. as
= 3

19 .
dE* 4 = 2 (dzk —iwkl ). (10)

3
s 2 dzk

Therefore we get

- a5 d d as i0os 0 d
o g i Y WU Ui I (PR i
Os)" = 2504 (8x” ! Bx") ( g +2811) (Bt/ ! 811)

We need to spell out the conditions for the vector field (35)7 to be holomorphic.
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Lemma 2.3, There exist smooth functions Fy,, such that the forms &, = Fy, d&* +
wi dzt + iy togetherwith dé*, u=1,...,mandk =1, ..., N, are a basis of holomor-
phic (1, 0)-forms.

Proof. Certainly dé# is holomorphic and we look for holomorphic (1, 0)-forms given
as @ = Fy, dg¥ + Gi(p[ for smooth functions Fy,, Gi and ¢ = wy dz! + iw. Note
that @ (d/9t — 1J(9/9%)) is holomorphic if ¢y is holomorphic because 3/(d¢) is a real
holomorphic symmetry. However, @ (d/(0t;) — iJ(3/(3%))) = 2iG§( so we already know
that 3G!, = 0. We need (d®;)"") = 0 and we find )"V = 3 Fy, A dE# +GL dg V.
Due to (2) and (4) we find

Jw

19 - ; A _
Ly _ _10%quy Ly, v I qen Jo__ i jp
dy, =294 dé# A dE7 + —_85” dé* A (dZ —iw/ P wp).
Put G| = &}. Then (d®)"D = 0iff
dFy, dwy
—_— =2 =0, 11
30 SEN 1)
g,y 0Fy,
2—— =0. 12
azk + aEv (12)

Now, the integrability condition for systems (11) and (12) is easily seen to be satisfied
dueto (1),(5)and (9). O

We are now ready to prove our ansatz. We refer to Proposition 2.1 for the notation.

Theorem 2.4. Let M>" be a T -symmetric compact Kihler manifold of scalar curvature
s. Then the metric is extremal iff

887 (qwé%> =0. (13)
s (1 555) =0 (14)
8—27 (qw’a%) = 537 (q””gi—i) : (15)
% (qwéiiu) - (q””g—i)’ (16)
R o o =0 a7
pv 88 dww 35wk

dxH dyY — 1 dyn axv ' (18)

Proof. (3s)” is holomorphic iff d£*((8s)?) and Py ((3s)*) are holomorphic functions for
all i and k. We have seen in (10) that
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af af

- - 1
_ w29 kK
af = P d&x + 232k dz" —iwwy)

for a function f. This leads to the six equations above. O

Obviously we need an expression for the scalar curvature in order to be able to work with
the ansatz in Theorem 2.4. We have

Proposition 2.5. Ler M>" be a symmetric Kdihler metric as in Proposition 2.1 and let
u = logdet g — logdet w. Then the scalar curvature s satisfies

3%u 3u o 31\ g0 3 g Ou
[ p— _ [ s ki
* xriax dyrayY + (w azk) az! lq + az! (w 8:") ‘

Proof. We have the Ricci form p = ——% dJ dlogdet g and det g is the ratio between the
volume and the 2m form associated with a holomorphic frame. From the identity £2 = £2,+
dz* A wy we get vol = (1/m!) 2™ = vol(g) A (/\,’\,\:l dz* A wy). Furthermore, the 2m-form
W associated to the holomorphic frame d§#, @, satisfies (i /2)"¥ = detw /\,{Ll dz* A
wi N\ dx* Ady*.Sincevol(g) = detgA)_, dx* A dy* we getdet g = det g(det w)~ "
Furthermore, 2mp A 2"~! = s which after some elementary computations gives the
claim. O

3. Examples of new extremal Kihler metrics

Assume N = I, that is assume that we have an S'-symmetric Kihler manifold M2".

. . 2
Assume, furthermore, that the Kihler quotient B>"~ is a product Blz'"' X -+ x By™ of
compact Kdhler—Einstein spaces (B;, ;) of scalar curvature —2m; and that the Kihler
metric g on B is equal to zQ where 0 = Y1, n}Q; and ;1 B — B; is the projection

onto the i th factor. Then we have
9% logdet O; 1(QA)
aglagr 2 UMY

where EI.“ are complex coordinates on B;. Also,

n
u=(m-— l)logz+Zlogdet Q; — logw,

i=1
where u is defined in Proposition 2.5. It follows that

1w

.=(m—Dz " -
u,=(m )z w Py

and that the scalar curvature is

( D 2+ ~1,-194 9 w_la—u)
§=tm P Y AT 3z )
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The only equation on s left from Theorem 2.4 is 325 /37> = 0,i.e.s = Az + B for constants
A, B of integration. Therefore ¢ = w™'9u/dz satisfies

a
2ot 4+ plm = 1) = —2(m — 1) — A2 - Bz,

—10w ~1
w —=m-Dz" —we.

az
We integrate these equations to get w—! = P(z)/z"~! where
—2 m m—+2 m+1 '

P(z) = ;Z -1z — 2 — €32 —C4 (19

for ¢;, i = 1, 2,3, 4 constants of integration (compare this with the corresponding poly-
nomials in [3,6]). Furthermore, from Eq. (4) we have dw = Z;’:l £2; where £2; is the
Kihler form of B;. The Chern form ¢ (K l.’l) of the anti-canonical bundle K i_l of B; equals
pi/2m, where p; = —£2; is the Ricci form of B;. Thus, the manifold M of the Kiihler metric
g=20+wd? +w o is Q_ (K" — (OD.

Theorem 3.1. Let M>™ be the total space of the CP'-bundle P(O & ®!_; K i_l) over
products B myyx B, 2y of Kdhler-Einstein manifolds B; of scalar curvature —2m,
where K; is the canonical bundle of B; and m; is the complex dimension of B;. Then M has
an S'-symmetric extremal Kihler metric.

Remark 3.2.

1. When n = | and m| = 1 this metric is contained in the work of Tgnnesen-Friedman
[17].

2. We could have considered a situation where each B; has positive scalar curvature but
this case is contained in the Koiso-Sakane approach [10] followed by Hwang [8].

Proof of the theorem. We will show that the metric constructed above on Q7 _, (K . - {OH
can be compactified. We need z > 0, w > 0 and thus P(z) > 0. Suppose we have positive
numbers a > b such that w > 0 on the interval (a, b) and w~' = 2(z — a) + O(z — a)?
near a; w™' = 2(b —z) + O(z — b)? near z = b. Then we can add a copy of B| x - - - x B,
at a and b to get the compact CP!-bundle [13,14]: for example, near z = a, setr = 7 — a,
then g = (1 + O(r%)(dr? + r2w?). The conditions on w ™! can be rewritten as w™'(a) =
wl(b) =0, (w™"Y(a) =2, (w™") (b) = —2 or equivalently

P@) =Pb) =0, Pla)=2a""", P =-2""". (20)

We may rescale the metric such thata = 1. Thus, we need to prove the existence of b > 1
such that (20) is satisfied and P(z) > Oon 1 < z < b. The conditions in (20) determines
the coefficients ¢, ¢7, ¢3, ¢4 in terms of b and m. To, furthermore, secure P(z) > 0 on
1 < z < b, the boundary conditions in (20) show, it is enough to prove that for each m we
can find b such that P”(z) < Oon | < z < b, which we prove in the following lemma. O
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Lemma 3.3. There exists > 1| such that for b € (1, B), P"(2) is negative in the interval
(1, B].

Proof. We can write P”(z) = 2”28, (z) where
Sn(z) = —ci1(m+2)Y(m + l)z2 —cm+ ymz —2(m — 1).
One can show from (20) with a = 1 that if we set

f=2(=(m + DB +2m? 6" = 2(m> — " + (m — 1)),
tr:=2((m + 2)b¥" T — 2m(m + 1Hp" 2
+2m* +3m — 2" — (m + 2" — (m — 2)),

and
no= m(_b2:n+2 +(m+ 1)2bm+2 —2m(m +2)bm-ﬁ—l +(m+ I)me -1,

then ¢; = #1/n and ¢2 = 1o /n. For m fixed, ¢} and ¢> can be viewed as functions of b > .
Moreover #1, t2 and n are clearly analytic funtions of b, also at b = 1.
First, observe that

d31|
r|(l)_——(l)—- bz(l)—O and —d?(l)<0.

This implies that there exists a constant &, > | such that for b € (1, b,), 11(h) < 0.
Second, observe that
dn d?n d3n d*n
l=—l=——l——1—0 nd —(1 0.
n(l) db() de() dbz() a db4()<
This implies that there exists a constant b, > 1 such that for b € (1, b,), n < 0. Third,
consider the function A(b) := mt; + (m + 2)t;. Observe that
dh d’h d’h
h(h)=—(1) = 1) =0and —
=g ="gah=0md 57
This implies that there exists a constant b;, > 1 such that for b € (1, by,), h(b) < 0. Now,
define 8 = min(b,,, by, by). Let b € (1, B). Since ¢|(b) > 0 we have that S, is concave
down. Since h(b) < 0 and ¢; < 0 the sum of roots (if any)

(H < 0.

mco . mt
—m4+2¢c; —(m+2n
is less than . Since S, (0) = —2(m — 1) we have that the roots of S,,, if any, will have the

same sign. Therefore each root is less than 1. Thus, for b € (1, 8), Sy (z) < Oforz = L. In
particular, S,, and P”(z) are negative in the interval [1,5]. O

Remark 3.4. These examples are notonly important because they give new extremal Kéhler
metrics. Also, our work gives an example of a strongly extremal Kihler metric [9,16]. This
property is closely related to the existence of a local Einstein metric in the conformal class of
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one of the extremal Kdhler metrics of Tgnnesen-Friedman. The relation to Einstein geometry
is a topic we shall consider in the next section.

4. Einstein metrics in dimension four

The extremal Kihler metric of Tgnnesen-Friedman in dimension four is defined on a
ruled surface M (a Riemann sphere bundle over a complex curve) of genus g > 1 [17].
Using the fact that the homology of such a surface is generated by a fiber and a section of
the projection to the Riemann surface, it is easily seen that the Euler characteristic x (M)
satisfies x (M) = 4(]1 — g) (indeed, the Euler characteristic is multiplicative in fibrations).
As Einstein manifolds in dimension four must have non-negative Euler characteristic [1],
the Tgnnesen-Friedman metric is not globally conformal to an Einstein metric. However,
here we shall consider the local behavior and compare with the Calabi metric.

Consider the two triplets of one forms o given by

dof =05, Aoy, doy =05 Aof, dos =eof Aoy, €=l 2n

Furthermore, consider the metrics

z s P@ @5 (0924 (05))
= Z , 22
8e 4P.(2) (d2)* + e " +z 1 22)
where
P(2) =€ —c12* — 2’ —e3z—ea (23)

For e = 41 we get Calabi’s extremal metrics in the Bianchi IX class (with U (2) isometry
group) while for ¢ = —1 we get the local version of the Tgnnesen-Friedman metrics in
the Bianchi VIII class (with U (1, 1) isometry group. In the compact metric only the circle
symmetry remains after taking quotient by the discrete group).

In both cases the scalar curvature is given by

2
s = 12¢, (z 4 ——) . @4)
26‘1
It is known [7] that if s> + 6sAs — 12|ds|? is constant, then the metric 8E = & /s2 is
locally Einstein.
This relation gives only one constraint

4cieq = o203 (25)

For fixed volume this constraint determines a unique Kéhler class of g, within the range of
a Tgnnesen-Friedman metric. The fact that one of the extremal metrics is locally conformally
Einstein implies that the extremal metric is also strongly extremal [9,16].

In order to compare with the work in the case of the Calabi metric [6], suppose that
¢2 # 0, in which case we can define new coordinates and parameters by
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21z — c3 4r1? 3
_ C12 C2’ S | ac _ ’ G aa =M (26)
2c1z2+ ¢ 4c [op) 3 dcy o)
Then the metric
g = 72[2(:1@% 2N
s
is given by
2 - 2 Ac(r) €\2 2 €y2 €2
ge =1 (d) +4 7( )7+ =r) o))"+ (05)) (28)
Ae(r)
with
)‘12 4 25,2 2
Ae(r)=?r 4+ (e —=2A)r* —2Mr + € — Al°. (29)

The Derdzinski criteria gives that gg is indeed Einstein and a direct computation shows
that the Einstein constant is equal to A. For ¢ = 41 these metrics were derived by Carter
[5] while for ¢ = —1 we get its Bianchi VIII partner. The Calabi metric is defined on ruled
surfaces of genus zero. If the degree of the line bundle is equal to 1, the manifold is the blow-
up of the complex projective plane in one point and the Calabi metric is globally conformal
to the Page metric [6]. The Tgnnesen-Friedman metric is locally conformally Einstein but
due to the vanishing of the scalar curvature (24) on the ruled surface, the conformal change
does not extend to the compact surface, in agreement with the topological arguments above.
However, there are complete non-compact Einstein metrics in this Bianchi VIII family (on
D x R? where D is the disk in R?).

Acknowledgements

Thanks are due to Claude LeBrun for useful conversations and support.

References

[1] A.L. Besse, Einstein Manifolds, Springer, Berlin, 1987.

[2] J.-P. Bourguignon, Eugenio Calabi and Kihler metrics, in: Manifolds and Geometry, Proceedings of
the Symposium on Mathematics, Pisa, 1993, XXXVI, Cambridge University Press, Cambridge, 1996.
pp- 61-85.

{3] E. Calabi, Extremal Kihler Metrics, in: S.T. Yau (Ed.), Seminar on Differential Geometry, Annals of
Mathematics Studies, vol. 102, Princeton University Press, Princeton, NJ, 1982, pp. 259-290.

[4] E. Calabi, Extremal Kihler Metrics, II, in: I. Chavel, H.M. Farkas (Eds.), Differential Geometry and
Complex Analysis, Rauch Memorial Volume, Springer, New York, 1985, pp. 95-114.

[5] B. Carter, Hamilton—-Jacobi and Schrédinger separable solutions of Einstein’s equations, Comm. Math.
Phys. 10 (1968) 280-310.

[6] T. Chave, G. Valent, Compact extremal versus compact Einstein metrics, Classical Quantum Gravity
13 (1996) 2097-2108.

[7]1 A. Derdzinski, Self-dual Kihler manifolds and Einstein manifolds of dimension four, Comp. Math. 49
(1983) 405-433.



34 T. Chave et al. / Journal of Geometry and Physics 31 (1999) 25-34

[8] A.D. Hwang, On existence of Kahler metrics with constant scalar curvature, Osaka J. Math. 31 (1984)
561-595.
[9]1 A.D. Hwang, S.R. Simanca, Extremal Kihler metrics on Hirzebruch surfaces which are locally
conformally equivalent to Einstein metrics, Math. Ann. 309 (1997) 97-106.
[10] N. Koiso, Y. Sakane, Non-homogeneous Kahler-Einstein metrics on compact complex manifolds II,
Osaka J. Math. 25 (1988) 933-959.
[11] C.R. LeBrun, Explicit self-dual metrics on CP,4...4CIP,, J. Differential Geom. 34 (1991) 223-253.
[12] C.R. LeBrun, Anti-self-dual Hermitian metrics on blown-up Hopf surfaces, Math. Ann. 289 (1991)
383-392.
[13] CR. LeBrun, Scalar-flat Kahler metrics on blown-up ruled surfaces, J. Reine Angew. Math. 420 (1991)
161-177.
[14] C.R. LeBrun, S.R. Simanca, Extremal Kihler metrics and complex deformation theory, Geom. Func.
Anal. 4 (1994) 298-335.
[15] H. Pedersen, Y.S. Poon, Hamiltonian constructions of Kihler—Einstein metrics and Kahler metrics of
constant scalar curvature, Comm. Math. Phys. 136 (1991) 309-326.
[16] S.R. Simanca, Minimizing extremal Kihler metrics and conformal equivalence to Einstein metrics,
Stony Brook, Preprint, December 1997.
[17] C.W. Tgnnesen-Friedman, Extremal Kihler metrics on minimal ruled surfaces, J. Reine Angew. Math.,
to appear.



